Remote Sensing (Feb 2023)

A Novel Deep Learning Method for Automatic Recognition of Coseismic Landslides

  • Qiyuan Yang,
  • Xianmin Wang,
  • Xinlong Zhang,
  • Jianping Zheng,
  • Yu Ke,
  • Lizhe Wang,
  • Haixiang Guo

DOI
https://doi.org/10.3390/rs15040977
Journal volume & issue
Vol. 15, no. 4
p. 977

Abstract

Read online

Massive earthquakes generally trigger thousands of coseismic landslides. The automatic recognition of these numerous landslides has provided crucial support for post-earthquake emergency rescue, landslide risk mitigation, and city reconstruction. The automatic recognition of coseismic landslides has always been a difficult problem due to the relatively small size of a landslide and various complicated environmental backgrounds. This work proposes a novel semantic segmentation network, EGCN, to improve the landslide identification accuracy. EGCN conducts coseismic landslide recognition by a recognition index set as the input data, CGBlock as the basic module, and U-Net as the baseline. The CGBlock module can extract the relatively stable global context-dependent features (global context features) and the unstable local features by the GNN Branch and CNN Branch (GNN Branch contains the proposed EISGNN) and integrates them via adaptive weights. This method has four advantages. (1) The recognition indices are established according to the causal mechanism of coseismic landslides. The rationality of the indices guarantees the accuracy of landslide recognition. (2) The module of EISGNN is suggested based on the entropy importance coefficient and GATv2. Owing to the feature aggregation among nodes with high entropy importance, global and useful context dependency can be synthesized and the false alarm of landslide recognition can be reduced. (3) CGBlock automatically integrates context features and local spatial features, and has strong adaptability for the recognition of coseismic landslides located in different environments. (4) Owing to CGBlock being the basic module and U-Net being the baseline, EGCN can integrate the context features and local spatial characteristics at both high and low levels. Thus, the accuracy of landslide recognition can be improved. The meizoseismal region of the Ms 7.0 Jiuzhaigou earthquake is selected as an example to conduct coseismic landslide recognition. The values of the precision indices of Overall Accuracy, mIoU, Kappa, F1-score, Precision, and Recall reached 0.99854, 0.99709, 0.97321, 0.97396, 0.97344, and 0.97422, respectively. The proposed method outperforms the current major deep learning methods.

Keywords