PLoS ONE (Jan 2013)

Neurodegeneration in a Drosophila model for the function of TMCC2, an amyloid protein precursor-interacting and apolipoprotein E-binding protein.

  • Paul C R Hopkins

DOI
https://doi.org/10.1371/journal.pone.0055810
Journal volume & issue
Vol. 8, no. 2
p. e55810

Abstract

Read online

We previously identified TMCC2 as a protein that interacted differentially with normal versus Alzheimer's disease-risk forms of both apolipoprotein E (apoE) and the amyloid protein precursor (APP). We hypothesized that disrupted function of TMCC2 would affect neurodegeneration. To test this hypothesis, we investigated the Drosophila orthologue of TMCC2, that we have named Dementin. We showed that Dementin interacts genetically both with human APP and its Drosophila orthologue, the APP-like protein (APPL). Ectopic expression of Dementin in Drosophila rescued developmental and behavioral defects caused by expression of human APP. Both a hypomorphic lethal mutation in the dementin gene (dmtn(1)) and RNAi for Dementin caused the accumulation of fragments derived from APPL. We found that Dementin was required for normal development of the brain, and that glial Dementin was required for development of the Drosophila medulla neuropil. Expression of wild-type Dementin in either the neurons or glia of dmtn(1) flies rescued developmental lethality. Adult dmtn(1) flies rescued by expression of wild-type Dementin in glia, i.e. whose neurons expressed only dmtn(1), showed pathological features resembling early onset Alzheimer's disease, accumulation of abnormal APPL metabolites, synaptic pathology, mis-localized microtubule-binding proteins, neurodegeneration, and early death.