Nature Communications (Apr 2024)
Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings
Abstract
Abstract The proliferation of computation-intensive technologies has led to a significant rise in the number of datacenters, posing challenges for high-speed and power-efficient datacenter interconnects (DCIs). Although inter-DCIs based on intensity modulation and direct detection (IM-DD) along with wavelength-division multiplexing technologies exhibit power-efficient and large-capacity properties, the requirement of multiple laser sources leads to high costs and limited scalability, and the chromatic dispersion (CD) restricts the transmission length of optical signals. Here we propose a scalable on-chip parallel IM-DD data transmission system enabled by a single-soliton Kerr microcomb and a reconfigurable microring resonator-based CD compensator. We experimentally demonstrate an aggregate line rate of 1.68 Tbit/s over a 20-km-long SMF. The extrapolated energy consumption for CD compensation of 40-km-SMFs is ~0.3 pJ/bit, which is calculated as being around 6 times less than that of the commercial 400G-ZR coherent transceivers. Our approach holds significant promise for achieving data rates exceeding 10 terabits.