Beilstein Journal of Nanotechnology (Dec 2010)

Electrochemical behavior of dye-linked L-proline dehydrogenase on glassy carbon electrodes modified by multi-walled carbon nanotubes

  • Haitao Zheng,
  • Leyi Lin,
  • Yosuke Okezaki,
  • Ryushi Kawakami,
  • Haruhiko Sakuraba,
  • Toshihisa Ohshima,
  • Keiichi Takagi,
  • Shin-ichiro Suye

DOI
https://doi.org/10.3762/bjnano.1.16
Journal volume & issue
Vol. 1, no. 1
pp. 135 – 141

Abstract

Read online

A glassy carbon electrode (GC) was modified by multi-walled carbon nanotubes (MWCNTs). The modified electrode showed a pair of redox peaks that resulted from the oxygen-containing functional groups on the nanotube surface. A recombinant thermostable dye-linked L-proline dehydrogenase (L-proDH) from hyperthermophilic archaeon (Thermococcus profundus) was further immobilized by physical adsorption. The modified electrode (GC/MWCNTs/L-proDH) exhibited an electrocatalytic signal for L-proline compared to bare GC, GC/L-proDH and GC/MWCNTs electrodes, which suggested that the presence of MWCNTs efficiently enhances electron transfer between the active site of enzyme and electrode surface. The immobilized L-proDH showed a typical Michaelis–Menten catalytic response with lower apparent constant.

Keywords