Identification of Novel Cannabinoid CB2 Receptor Agonists from Botanical Compounds and Preliminary Evaluation of Their Anti-Osteoporotic Effects
Si-Jing Hu,
Gang Cheng,
Hao Zhou,
Qi Zhang,
Quan-Long Zhang,
Yang Wang,
Yi Shen,
Chen-Xia Lian,
Xue-Qin Ma,
Qiao-Yan Zhang,
Lu-Ping Qin
Affiliations
Si-Jing Hu
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Gang Cheng
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Hao Zhou
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Qi Zhang
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Quan-Long Zhang
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Yang Wang
Zhejiang Traditional Chinese Medicine and Health Industry Group Co., Ltd., Hangzhou 310016, China
Yi Shen
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Chen-Xia Lian
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Xue-Qin Ma
Department of Pharmaceutical Analysis, School of Pharmacy Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
Qiao-Yan Zhang
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
Lu-Ping Qin
Department of Pharmacogonosy, School of Pharmaceutical Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou 310053, China
As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects—including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism—without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors–ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.