EPJ Web of Conferences (Jan 2021)
A DEEP LEARNING BASED SURROGATE MODEL FOR ESTIMATING THE FLUX AND POWER DISTRIBUTION SOLVED BY DIFFUSION EQUATION
Abstract
A deep learning based surrogate model is proposed for replacing the conventional diffusion equation solver and predicting the flux and power distribution of the reactor core. Using the training data generated by the conventional diffusion equation solver, a special designed convolutional neural network inspired by the FCN (Fully Convolutional Network) is trained under the deep learning platform TensorFlow. Numerical results show that the deep learning based surrogate model is effective for estimating the flux and power distribution calculated by the diffusion method, which means it can be used for replacing the conventional diffusion equation solver with high efficiency boost.
Keywords