Molecules (Mar 2022)

Structure/Function Analysis of Truncated Amino-Terminal ACE2 Peptide Analogs That Bind to SARS-CoV-2 Spike Glycoprotein

  • Robert T. Mackin,
  • J. Vincent Edwards,
  • E. Berk Atuk,
  • Noah Beltrami,
  • Brian D. Condon,
  • Janarthanan Jayawickramarajah,
  • Alfred D. French

DOI
https://doi.org/10.3390/molecules27072070
Journal volume & issue
Vol. 27, no. 7
p. 2070

Abstract

Read online

The global burden of the SARS-CoV-2 pandemic is thought to result from a high viral transmission rate. Here, we consider mechanisms that influence host cell–virus binding between the SARS-CoV-2 spike glycoprotein (SPG) and the human angiotensin-converting enzyme 2 (ACE2) with a series of peptides designed to mimic key ACE2 hot spots through adopting a helical conformation analogous to the N-terminal α1 helix of ACE2, the region experimentally shown to bind to the SARS-CoV-2 receptor-binding domain (RBD). The approach examines putative structure/function relations by assessing SPG binding affinity with surface plasmon resonance (SPR). A cyclic peptide (c[KFNHEAEDLFEKLM]) was characterized in an α-helical conformation with micromolar affinity (KD = 500 µM) to the SPG. Thus, stabilizing the helical structure of the 14-mer through cyclization improves binding to SPG by an order of magnitude. In addition, end-group peptide analog modifications and residue substitutions mediate SPG binding, with net charge playing an apparent role. Therefore, we surveyed reported viral variants, and a correlation of increased positive charge with increased virulence lends support to the hypothesis that charge is relevant to enhanced viral fusion. Overall, the structure/function relationship informs the importance of conformation and charge for virus-binding analog design.

Keywords