Genome Biology (Sep 2024)
Massive detection of cryptic recessive genetic defects in dairy cattle mining millions of life histories
- Florian Besnard,
- Ana Guintard,
- Cécile Grohs,
- Laurence Guzylack-Piriou,
- Margarita Cano,
- Clémentine Escouflaire,
- Chris Hozé,
- Hélène Leclerc,
- Thierry Buronfosse,
- Lucie Dutheil,
- Jeanlin Jourdain,
- Anne Barbat,
- Sébastien Fritz,
- Marie-Christine Deloche,
- Aude Remot,
- Blandine Gaussères,
- Adèle Clément,
- Marion Bouchier,
- Elise Contat,
- Anne Relun,
- Vincent Plassard,
- Julie Rivière,
- Christine Péchoux,
- Marthe Vilotte,
- Camille Eche,
- Claire Kuchly,
- Mathieu Charles,
- Arnaud Boulling,
- Guillaume Viard,
- Stéphanie Minéry,
- Sarah Barbey,
- Clément Birbes,
- Coralie Danchin-Burge,
- Frédéric Launay,
- Sophie Mattalia,
- Aurélie Allais-Bonnet,
- Bérangère Ravary,
- Yves Millemann,
- Raphaël Guatteo,
- Christophe Klopp,
- Christine Gaspin,
- Carole Iampietro,
- Cécile Donnadieu,
- Denis Milan,
- Marie-Anne Arcangioli,
- Mekki Boussaha,
- Gilles Foucras,
- Didier Boichard,
- Aurélien Capitan
Affiliations
- Florian Besnard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Ana Guintard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Laurence Guzylack-Piriou
- IHAP, Université de Toulouse, INRAE, ENVT
- Margarita Cano
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Clémentine Escouflaire
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Hélène Leclerc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Thierry Buronfosse
- VetAgro Sup, Université Lyon1
- Lucie Dutheil
- IHAP, Université de Toulouse, INRAE, ENVT
- Jeanlin Jourdain
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Anne Barbat
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Sébastien Fritz
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Marie-Christine Deloche
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Aude Remot
- INRAE, Université de Tours, ISP
- Blandine Gaussères
- IHAP, Université de Toulouse, INRAE, ENVT
- Adèle Clément
- IHAP, Université de Toulouse, INRAE, ENVT
- Marion Bouchier
- VetAgro Sup, Université Lyon1
- Elise Contat
- VetAgro Sup, Université Lyon1
- Anne Relun
- Oniris, INRAE, BIOEPAR
- Vincent Plassard
- ENVA
- Julie Rivière
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Marthe Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Camille Eche
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse
- Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse
- Mathieu Charles
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Arnaud Boulling
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Guillaume Viard
- ELIANCE
- Stéphanie Minéry
- IDELE
- Sarah Barbey
- UE326, Unité Expérimentale du Pin, INRAE
- Clément Birbes
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility
- Coralie Danchin-Burge
- IDELE
- Frédéric Launay
- UE326, Unité Expérimentale du Pin, INRAE
- Sophie Mattalia
- IDELE
- Aurélie Allais-Bonnet
- ELIANCE
- Bérangère Ravary
- ENVA
- Yves Millemann
- ENVA
- Raphaël Guatteo
- Oniris, INRAE, BIOEPAR
- Christophe Klopp
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility
- Christine Gaspin
- Université Fédérale de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility
- Carole Iampietro
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse
- Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse
- Denis Milan
- GenPhySE, Université Fédérale de Toulouse, INRAE, INPT, ENVT
- Marie-Anne Arcangioli
- VetAgro Sup, Université Lyon1
- Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT
- Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI
- DOI
- https://doi.org/10.1186/s13059-024-03384-7
- Journal volume & issue
-
Vol. 25,
no. 1
pp. 1 – 30
Abstract
Abstract Background Dairy cattle breeds are populations of limited effective size, subject to recurrent outbreaks of recessive defects that are commonly studied using positional cloning. However, this strategy, based on the observation of animals with characteristic features, may overlook a number of conditions, such as immune or metabolic genetic disorders, which may be confused with pathologies of environmental etiology. Results We present a data mining framework specifically designed to detect recessive defects in livestock that have been previously missed due to a lack of specific signs, incomplete penetrance, or incomplete linkage disequilibrium. This approach leverages the massive data generated by genomic selection. Its basic principle is to compare the observed and expected numbers of homozygotes for sliding haplotypes in animals with different life histories. Within three cattle breeds, we report 33 new loci responsible for increased risk of juvenile mortality and present a series of validations based on large-scale genotyping, clinical examination, and functional studies for candidate variants affecting the NOA1, RFC5, and ITGB7 genes. In particular, we describe disorders associated with NOA1 and RFC5 mutations for the first time in vertebrates. Conclusions The discovery of these many new defects will help to characterize the genetic basis of inbreeding depression, while their management will improve animal welfare and reduce losses to the industry.
Keywords
- Data science
- Recessive genetic defects
- Livestock
- Large-scale genotyping
- Whole-genome sequencing
- Inbreeding depression