International Islamic University Malaysia Engineering Journal (Jan 2025)

4D Radar Imaging and Camera Fusion for Road Crossing Detection and Classification Using Deep Learning

  • Liyaana Shahirah Wan Abd Aziz,
  • Farah Nadia Mohd Isa,
  • Faridah Abd Rahman,
  • Arvind Hari Narayanan,
  • Ahmad Reza Alghooneh,
  • George Shaker

DOI
https://doi.org/10.31436/iiumej.v26i1.3268
Journal volume & issue
Vol. 26, no. 1

Abstract

Read online

This paper presents the development of an object detection and classification system for road crossing areas, integrating 4D radar imaging and a mono-camera dataset with a deep-learning neural network. The system utilizes deep neural networks implemented via Keras and TensorFlow to detect and classify multiple targets, including pedestrians, cars, buses, and trucks. At the core of this work is Retina-4F, a multi-chip radar imaging system developed by Smart Radar System, which offers high-resolution object detection and localization capabilities. Retina-4F provides real-time 4D information on detected objects, operating in a cascading architecture with three transmitters and four receivers per chip. Two road-crossing scenes were simulated to collect data, generating a point cloud dataset labeled with target classes for neural network training and testing. Data from two main sensors—Retina-4F and a mono-camera—were pre-processed using DBSCAN and YOLOv7 for enhanced accuracy. Operating at 77 GHz, Retina-4F was tested in two road environments, generating a dataset with approximately 10,000 frames. The deep learning model demonstrated an accuracy of 84% in classifying multiple targets, including cars, pedestrians, buses, and trucks. The fusion of radar point cloud data with visual sensor data proved effective, showing strong results in distinguishing target types. ABSTRAK: Kertas ini membentangkan pembangunan sistem pengesanan dan pengelasan objek untuk kawasan lintasan jalan raya, menggabungkan pengimejan radar 4D dan set data mono-kamera dengan rangkaian neural pembelajaran mendalam. Sistem ini menggunakan rangkaian neural mendalam yang dilaksanakan melalui Keras dan TensorFlow untuk mengesan dan mengelaskan pelbagai sasaran, termasuk pejalan kaki, kereta, bas, dan trak. Inti daripada kajian ini adalah Retina-4F, sistem pengimejan radar berbilang cip yang dibangunkan oleh Smart Radar System, yang menawarkan keupayaan pengesanan objek dan penentuan lokasi resolusi tinggi. Retina-4F menyediakan maklumat 4D masa nyata mengenai objek yang dikesan, beroperasi dengan tiga pemancar dan empat penerima bagi setiap cip dalam seni bina kaskad. Dua adegan lintasan jalan disimulasikan untuk mengumpul data, menghasilkan set data awan titik yang dilabel dengan kelas sasaran untuk latihan dan ujian rangkaian neural. Data daripada dua sensor utama—Retina-4F dan mono-kamera—dipra-proses menggunakan DBSCAN dan YOLOv7 untuk meningkatkan ketepatan. Beroperasi pada 77 GHz, Retina-4F diuji dalam dua persekitaran jalan yang berbeza, menghasilkan set data dengan kira-kira 10,000 bingkai. Model pembelajaran mendalam menunjukkan ketepatan sebanyak 84% dalam mengelaskan pelbagai sasaran, termasuk kereta, pejalan kaki, bas, dan trak. Penggabungan data awan titik radar dengan data sensor visual terbukti berkesan, menunjukkan hasil yang kuat dalam membezakan antara jenis sasaran.

Keywords