Biomaterials and Biosystems (Sep 2021)

Endothelial barrier function is co-regulated at vessel bifurcations by fluid forces and sphingosine-1-phosphate

  • Ehsan Akbari,
  • Griffin B. Spychalski,
  • Miles M. Menyhert,
  • Kaushik K. Rangharajan,
  • Joseph W. Tinapple,
  • Shaurya Prakash,
  • Jonathan W. Song

Journal volume & issue
Vol. 3
p. 100020

Abstract

Read online

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid mediator of endothelial barrier function. Prior studies have implicated mechanical stimulation due to intravascular laminar shear stress in co-regulating S1P signaling in endothelial cells (ECs). Yet, vascular networks in vivo consist of vessel bifurcations, and this geometry generates hemodynamic forces at the bifurcation point distinct from laminar shear stress. However, the role of these forces at vessel bifurcations in regulating S1P-dependent endothelial barrier function is not known. In this study, we implemented a microfluidic platform that recapitulates the flow dynamics of vessel bifurcations with in situ quantification of the permeability of microvessel analogues. Co-application of S1P with impinging bifurcated fluid flow, which is characterized by approximately zero shear stress and 38 dyn•cm−2 stagnation pressure at the vessel bifurcation point, promotes vessel stabilization. Similarly, co-treatment of S1P with 3 dyn•cm−2 laminar shear stress is also protective of endothelial barrier function. Moreover, it is shown that vessel stabilization due to bifurcated fluid flow and laminar shear stress is dependent on S1P receptor 1 or 2 signaling. Collectively, these findings demonstrate the endothelium-protective function of fluid forces at vessel bifurcations and their involvement in coordinating S1P-dependent regulation of vessel permeability.

Keywords