Soils and Foundations (Dec 2024)

Electrodeposition-based self-healing technique for structures with loosely compacted sand

  • Ibuki Nishimura,
  • Hitoshi Matsubara

Journal volume & issue
Vol. 64, no. 6
p. 101535

Abstract

Read online

The natural erosion of sand along coastlines and in landfills is a complex phenomenon influenced by interactions among currents, waves, tides, and wind. Countermeasures against internal erosion in landfills often involve installing geotextile sheets and/or filters between seawalls and landfills. However, the mere installation of such structures proves insufficient for comprehensively monitoring and mitigating soil erosion, and ensuring adequate ground stability and safety is challenging. This study focuses on the application of electrodeposition for mitigating soil erosion and potentially repairing these structures. By applying a weak electric current to severely deteriorated objects, carbonate minerals, called electrodeposits, are deposited on the cathode side and can repair vulnerable areas through self-organized solidification. Experiments were conducted using various silica sand specimens to assess the applicability of electrodeposition to discrete sand. The results revealed that, in specimens with relatively large sand particles, such as those in silica sand No. 3, the sand adhered to the cathode, forming a solidified area approximately 15–17 mm high. A microstructural analysis indicated the presence of crystallized minerals resembling calcium carbonate bonding within the interstitial spaces between the sand particles. These experimental findings suggest that electrodeposition can be applied to enhance the stability and safety of sandy soil-based structures.

Keywords