Geosciences (Dec 2021)

Insights on the Origin of Vitrified Rocks from Serravuda, Acri (Italy): Rock Fulgurite or Anthropogenic Activity?

  • Chiara Elmi,
  • Anna Cipriani,
  • Federico Lugli,
  • Giampaolo Sighinolfi

DOI
https://doi.org/10.3390/geosciences11120493
Journal volume & issue
Vol. 11, no. 12
p. 493

Abstract

Read online

In this study, twenty five partially vitrified rocks and four samples of vitrified rocks collected on the top hill called Serravuda (Acri, Calabria, Italy) are analyzed. The goal is to shed light on the origin of these enigmatic vitrified materials. The analyzed vitrified rocks are a breccia of cemented rock fragments (gneiss, granitoid, and amphibolite fragments) which extends for more than 10 m, forming a continuous mass along the northern and north-west border of the flat top hill. Surrounded by the vitrified accumulation, exposed Paleozoic granitoid substrate rocks show limited melting or heat-alteration processes. By mapping minerals embedded in the glass matrix via X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM), an interpretation of source rock material, reactions, and thermometric indications to form vitrified materials on the top hill of Serravuda, Acri (Italy), is provided. The mineralogical composition of heated or partially vitrified samples is heterogeneous owing to the effects of heating events, but it mostly recalls the parent rock composition (gneiss, granitoid, and amphibolite). The presence of quartz, cristobalite, tridymite, mullite, plagioclase, hercynite, cordierite, and olivine in Serravuda partially vitrified rocks and glasses suggests that samples were subjected to pyrometamorphism and the temperature range at which the glass formed was about 1000–1100 °C in the presence of hydrous gas, burning organic material (e.g., wood), and assuming thermodynamic equilibrium. Lithologies of the heated or partially vitrified rock fragments are a mixture of parent rocks not outcropping on the top of the hill such as gneiss and amphibolite. Data suggest that Serravuda vitrified rocks are most likely the result of anthropic activities and could represent remnants of vitrified fort walls. The mineral assemblage of partially vitrified rocks and glasses suggests that the fort walls were made of slabs derived from the local metamorphic rocks with the addition of Serravuda substrate Paleozoic granitoid rocks to improve the strength and insulation of the fort walls.

Keywords