فصلنامه علوم و فناوری فضایی (Mar 2020)
Performance Analysis of FMC Actuators to Microsatellite Temperature Management Based on 3-Axis and Pyramidal Configuration
Abstract
In this paper, the performance of fluid momentum controller (FMC) actuators in satellite temperature management is investigated based on two pyramidal and 3-axis proposed configurations. In this regard, the temperature of different satellite surfaces with fluid actuators and without actuators in an orbital period of satellite is investigated and the results are compared to each other. For FMC actuators that are closed as a loop, a Moving Reference Frame (MRF) is used and the flow inside the actuators is laminar. The effect of fluid angular velocity of actuators on the temperature of satellite surfaces with two different angular velocity has been investigated and time-dependent heat flux is applied to the satellite surfaces. The results indicate that in the pyramidal configuration, the decrease in the temperature of the satellite wall surfaces is influenced by two parameters: fluid angular velocity and orbital period of satellite, but in the critical conditions, the 3-axis configuration can carry out this temperature management more quickly.
Keywords