International Journal of Mining Science and Technology (Nov 2024)

Experimental study on permeability evolution of deep high-stressed coal under major horizontal stress unloading paths

  • Chao Liu,
  • Jiahao Zhang,
  • Songwei Wu,
  • Jinghua Qi,
  • Beichen Yu,
  • Liang Wang

Journal volume & issue
Vol. 34, no. 11
pp. 1495 – 1508

Abstract

Read online

Both bulk stress (σii) and stress path (SP) significantly affect the transportation characteristics of deep gas during reservoir pressure depletion. Therefore, the experimental study of horizontal stress unloading on seepage behavior of gas-bearing coal under constant σii-constraints is performed. The results show that coal permeability is affected by horizontal stress anisotropy (σH≠σh), and the contribution of minor horizontal stress to permeability is related to the differential response of horizontal strain. The slippage phenomenon is prominent in deep high-stress regime, especially in low reservoir pressure. σii and SP jointly determine the manifestation of slippage effect and the strength of stress sensitivity (γ) of permeability. Deep reservoir implies an incremental percentage of slip-based permeability, and SP weakens the slippage effect by changing the elastic–plastic state of coal. However, γ is negatively correlated with slippage effect. From the Walsh model, narrow (low aspect-ratio) fractures within the coal under unloading SP became the main channel for gas seepage, and bring the effective stress coefficient of permeability (χ) less than 1 for both low-stress elastic and high-stress damaged coal. With the raise of the effective stress, the effect of pore-lined clay particles on permeability was enhanced, inducing an increase in χ for high-stress elastic coal.

Keywords