International Journal of Molecular Sciences (Aug 2022)

Identification of Myocardial Insulin Resistance by Using Liver Tests: A Simple Approach for Clinical Practice

  • José Raúl Herance,
  • Queralt Martín-Saladich,
  • Mayra Alejandra Velásquez,
  • Cristina Hernandez,
  • Carolina Aparicio,
  • Clara Ramirez-Serra,
  • Roser Ferrer,
  • Marina Giralt-Arnaiz,
  • Miguel Ángel González-Ballester,
  • Juan M. Pericàs,
  • Joan Castell-Conesa,
  • Santiago Aguadé-Bruix,
  • Rafael Simó

DOI
https://doi.org/10.3390/ijms23158783
Journal volume & issue
Vol. 23, no. 15
p. 8783

Abstract

Read online

Background: We report that myocardial insulin resistance (mIR) occurs in around 60% of patients with type 2 diabetes (T2D) and was associated with higher cardiovascular risk in comparison with patients with insulin-sensitive myocardium (mIS). These two phenotypes (mIR vs. mIS) can only be assessed using time-consuming and expensive methods. The aim of the present study is to search a simple and reliable surrogate to identify both phenotypes. Methods: Forty-seven patients with T2D underwent myocardial [18F]FDG PET/CT at baseline and after a hyperinsulinemic–euglycemic clamp (HEC) to determine mIR were prospectively recruited. Biochemical assessments were performed before and after the HEC. Baseline hepatic steatosis index and index of hepatic fibrosis (FIB-4) were calculated. Furthermore, liver stiffness measurement was performed using transient elastography. Results: The best model to predict the presence of mIR was the combination of transaminases, protein levels, FIB-4 score and HOMA (AUC = 0.95; sensibility: 0.81; specificity: 0.95). We observed significantly higher levels of fibrosis in patients with mIR than in those with mIS (p = 0.034). In addition, we found that patients with mIR presented a reduced glucose uptake by the liver in comparison with patients with mIS. Conclusions: The combination of HOMA, protein, transaminases and FIB-4 is a simple and reliable tool for identifying mIR in patients with T2D. This information will be useful to improve the stratification of cardiovascular risk in T2D.

Keywords