Energies (Dec 2022)
Electric Vehicle Charging Schedules in Workplace Parking Lots Based on Evolutionary Optimization Algorithm
Abstract
The electrification of vehicles is considered to be the means of reducing the greenhouse gas (GHG) emissions of the transport sector, but “range anxiety” makes most people reluctant to adopt electric vehicles (EVs) as their main method of transportation. Workplace charging has been proven to counter range anxiety and workplace charging is becoming quite common. A workplace parking lot can house hundreds of EVs. In this paper, a program has been developed in MATLAB that uses the well-known evolutionary optimization algorithm, the genetic algorithm (GA), to optimize the charging schedule of fifty EVs that aims at achieving three goals: (a) keeping the electricity demand low, (b) reducing the cost of charging and (c) applying load shifting. Three schedules were developed for three scenarios. The results demonstrate that each schedule was successful in achieving its goal, which means that scheduling the charging of a fleet of EVs can be used as a method of demand-side management (DSM) in workplace parking lots and at the same time reduce the energy cost of charging. In the scenarios examined in this paper, cost was reduced by approximately 2%.
Keywords