TASK Quarterly (Dec 2022)
Application of visual classification algorithms for identification of underwater audio signals
Abstract
An audio processing and classification pipeline is presented in this work. The main focus is on the classification of sounds in a marine acoustic environment, however, the presented approach can be applied to other audio data. Audio samples from heterogeneous sources automatically spliced, normalized and transformed into spectrogram based visual representation are tagged on the pipeline input. The said representation is then used to train a convolutional neural network that can identify the presented categories in future recordings.
Keywords