Biotechnology for Biofuels (Apr 2018)

High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae

  • Jung Hun Lee,
  • Moo-Young Jung,
  • Min-Kyu Oh

DOI
https://doi.org/10.1186/s13068-018-1100-5
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Glycerol is a major byproduct of the biodiesel industry and can be converted to 1,3-propanediol (1,3-PDO) by microorganisms through a two-step enzymatic reaction. The production of 1,3-PDO from glycerol using microorganisms is accompanied by formation of unwanted byproducts, including lactate and 2,3-butanediol, resulting in a low-conversion yield. Results Klebsiella pneumoniae was metabolically engineered to produce high-molar yield of 1,3-PDO from glycerol. First, the pathway genes for byproduct formation were deleted in K. pneumoniae. Then, glycerol assimilation pathways were eliminated and mannitol was co-fed to the medium. Finally, transcriptional regulation of the dha operon were genetically modified for enhancing 1,3-propanediol production. The batch fermentation of the engineered strain with co-feeding of a small amount of mannitol yielded 0.76 mol 1,3-PDO from 1 mol glycerol. Conclusions Klebsiella pneumoniae is useful microorganism for producing 1,3-PDO from glycerol. Implemented engineering in this study successfully improved 1,3-PDO production yield, which is significantly higher than those reported in previous studies.

Keywords