Energies (Jul 2025)
Effects of Ethanol–Gasoline Blends on the Performance and Emissions of a Vehicle Spark-Ignition Engine
Abstract
This article presents experimental results related to the influence of bioethanol content in fuel blends on the performance and emissions of a spark-ignition engine. Tests were conducted for six ethanol–gasoline mixtures (ranging from 0% to 100% ethanol) under three engine control strategies: factory settings, a fuel dose increased by 10%, and a fuel dose increased by 20%—both with an ignition timing adjustment of +3°. Measurements included engine power and torque, as well as emissions of CO, CO2, HC, O2, and particulate matter, all performed under a full engine load. The results revealed the strong dependence of engine behavior on ethanol content. Increasing the ethanol concentration significantly reduced CO and HC emissions, as well as markedly lowering particulate emissions—particularly at 30% ethanol. Conversely, pure ethanol led to substantial reductions in power (up to 28%) and torque (up to 32%) compared to conventional gasoline. Adjustments to the fuel dose and ignition timing partially mitigated these losses. Emissions of CO2 and oxygen content in exhaust gases varied depending on the blend, highlighting the complex nature of the combustion process. The findings contribute to the understanding of renewable fuel behavior in SI engines and underscore the influence of both fuel composition and control strategies on performance and emission characteristics.
Keywords