Molecules (May 2022)
Ultra-Thin Wrinkled Carbon Sheet as an Anode Material of High-Power-Density Potassium-Ion Batteries
Abstract
Although K+ is readily inserted into graphite, the volume expansion of graphite of up to 60% upon the formation of KC8, together with its slow diffusion kinetics, prevent graphite from being used as an anode for potassium-ion batteries (PIBs). Soft carbon with low crystallinity and an incompact carbon structure can overcome these shortcomings of graphite. Here, ultra-thin two-dimensional (2D) wrinkled soft carbon sheets (USCs) are demonstrated to have high specific capacity, excellent rate capability, and outstanding reversibility. The wrinkles themselves prevent the dense stacking of micron-sized sheets and provide sufficient space to accommodate the volume change of USCs during the insertion/extraction of K+. The ultra-thin property reduces strain during the formation of K-C compounds, and further maintains structural stability. The wrinkles and heteroatoms also introduce abundant edge defects that can provide more active sites and shorten the K+ migration distance, improving reaction kinetics. The optimized USC20−1 electrode exhibits a reversible capacity of 151 mAh g−1 even at 6400 mA g−1, and excellent cyclic stability up to 2500 cycles at 1000 mA g−1. Such comprehensive electrochemical performance will accelerate the adoption of PIBs in electrical energy applications.
Keywords