Parasites & Vectors (Dec 2015)

Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae

  • Simone A. Gomes,
  • Adriano R. Paula,
  • Anderson Ribeiro,
  • Catia O. P. Moraes,
  • Jonathan W. A. B. Santos,
  • Carlos P. Silva,
  • Richard I. Samuels

DOI
https://doi.org/10.1186/s13071-015-1280-9
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. Methods Commercially available neem oil was used at concentrations ranging from 0.0001 to 1 %. Larval survival rates were monitored over a 7 day period following exposure to neem. The virulence of the fungus M. anisopliae was confirmed using five conidial concentrations (1 × 105 to 1 × 109 conidia mL−1) and survival monitored over 7 days. Two concentrations of fungal conidia were then tested together with neem (0.001 %). Survival curve comparisons were carried out using the Log-rank test and end-point survival rates were compared using one-way ANOVA. Results 1 % neem was toxic to A. aegypti larvae reducing survival to 18 % with S50 of 2 days. Neem had no effect on conidial germination or fungal vegetative growth in vitro. Larval survival rates were reduced to 24 % (S50 = 3 days) when using 1 × 109 conidia mL−1. Using 1 × 108 conidia mL−1, 30 % survival (S50 = 3 days) was observed. We tested a “sub-lethal” neem concentration (0.001 %) together with these concentrations of conidia. For combinations of neem + fungus, the survival rates were significantly lower than the survival rates seen for fungus alone or for neem alone. Using a combination of 1 × 107 conidia mL−1 + neem (0.001 %), the survival rates were 36 %, whereas exposure to the fungus alone resulted in 74 % survival and exposure to neem alone resulted in 78 % survival. When using 1 × 108 conidia mL−1, the survival curves were modified, with a combination of the fungus + neem resulting in 12 % survival, whilst the fungus alone at this concentration also significantly reduced survival rates (28 %). Conclusions The use of adjuvants is an important strategy for maintaining/increasing fungal virulence and/or shelf-life. The addition of neem to conidial suspensions improved virulence, significantly reducing larval survival times and percentages.

Keywords