Quantum Reports (May 2021)

Evidence of Predictive Power and Experimental Relevance of Weak-Values Theory

  • C. Aris Chatzidimitriou-Dreismann

DOI
https://doi.org/10.3390/quantum3020018
Journal volume & issue
Vol. 3, no. 2
pp. 286 – 315

Abstract

Read online

The concepts of Weak Values (WV) and Two-State Vector Formalism (TSVF) appear to motivate new experiments and to offer novel insights into dynamical processes in various materials of several scientific and technological fields. To support this view, here we consider the dynamics of hydrogen atoms and/or molecules in nanostructured materials like e.g., carbon nanotubes. The experimental method applied is incoherent scattering of thermal (i.e., non-relativistic) neutrons (INS). In short, the main finding consists in the following effect: the measured energy and momentum transfers are shown to contradict even qualitatively the associated expectations of conventional scattering theory. This effect was recently observed in INS experiments, e.g., in H2 adsorbed in carbon nanotubes, where a large momentum transfer deficit was found. Due to the broad abundance of hydrogen, these findings may be also of technological importance, since they indicate a considerably enhanced H mobility in specific structured material environments. A new INS experiment is proposed concerning the H mobility of an ultra-fast proton conductor (H3OSbTeO6) being of technological relevance. Further neutron scattering investigations on other systems (metallic hydrides and H2 encapsulated inside C60) are proposed. As concerns theoretical implications, the analysis of the experimental results strongly supports the view that the wavefunction (or state vector) represents an ontological physical entity of a single quantum system.

Keywords