Frontiers in Plant Science (Dec 2015)

The generation of Turnip crinkle virus-like particles in plants by the transient expression of wild-type and modified forms of its coat protein

  • Keith eSaunders,
  • George Peter Lomonossoff

DOI
https://doi.org/10.3389/fpls.2015.01138
Journal volume & issue
Vol. 6

Abstract

Read online

Turnip crinkle virus (TCV), a member of the genus carmovirus of the Tombusviridae family, has a genome consisting of a single positive-sense RNA molecule that is encapsidated in an icosahedral particle composed of 180 copies of a single type of coat protein. We have employed the CPMV-HT transient expression system to investigate the formation of TCV-like particles following the expression of the wild-type coat protein or modified forms of it that contain either deletions and/or additions insertions. Transient expression of the coat protein in plants results in the formation of capsid structures that morphologically resemble TCV virions (T=3 structure) but encapsidate heterogeneous cellular RNAs, rather than the specific TCV coat protein messenger RNA. Expression of an amino-terminal deleted form of the coat protein resulted in the formation of smaller T=1 structures that are free of RNA. The possibility of utilising TCV as a carrier for the presentation of foreign proteins on the particle surface was also explored by fusing the sequence of GFP to the C-terminus of the coat protein. The expression of coat protein-GFP hybrids permitted the formation of VLPs but the yield of particles is diminished compared to the yield obtained with unmodified coat protein. Our results confirm the importance of the N-terminus of the coat protein for the encapsidation of RNA and show that the coat protein’s exterior P domain plays a key role in particle formation.

Keywords