Inhalable Mannosylated Rifampicin–Curcumin Co-Loaded Nanomicelles with Enhanced In Vitro Antimicrobial Efficacy for an Optimized Pulmonary Tuberculosis Therapy
Juan M. Galdopórpora,
Camila Martinena,
Ezequiel Bernabeu,
Jennifer Riedel,
Lucia Palmas,
Ines Castangia,
Maria Letizia Manca,
Mariana Garcés,
Juan Lázaro-Martinez,
Maria Jimena Salgueiro,
Pablo Evelson,
Nancy Liliana Tateosian,
Diego Andres Chiappetta,
Marcela Analia Moretton
Affiliations
Juan M. Galdopórpora
Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Camila Martinena
Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1113, Argentina
Ezequiel Bernabeu
Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Jennifer Riedel
Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Lucia Palmas
Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy
Ines Castangia
Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy
Maria Letizia Manca
Department of Scienze della Vita e dell’Ambiente, University of Cagliari, 09124 Cagliari, Italy
Mariana Garcés
Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Juan Lázaro-Martinez
Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), CONICET, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Maria Jimena Salgueiro
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
Pablo Evelson
Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Nancy Liliana Tateosian
Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1113, Argentina
Diego Andres Chiappetta
Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Marcela Analia Moretton
Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
Among respiratory infections, tuberculosis was the second deadliest infectious disease in 2020 behind COVID-19. Inhalable nanocarriers offer the possibility of actively targeting anti-tuberculosis drugs to the lungs, especially to alveolar macrophages (cellular reservoirs of the Mycobacterium tuberculosis). Our strategy was based on the development of a mannose-decorated micellar nanoformulation based in Soluplus® to co-encapsulate rifampicin and curcumin. The former is one of the most effective anti-tuberculosis first-line drugs, while curcumin has demonstrated potential anti-mycobacterial properties. Mannose-coated rifampicin (10 mg/mL)–curcumin (5 mg/mL)-loaded polymeric micelles (10% w/v) demonstrated excellent colloidal properties with micellar size ~108 ± 1 nm after freeze-drying, and they remain stable under dilution in simulated interstitial lung fluid. Drug-loaded polymeric micelles were suitable for drug delivery to the deep lung with lung accumulation, according to the in vitro nebulization studies and the in vivo biodistribution assays of radiolabeled (99mTc) polymeric micelles, respectively. Hence, the nanoformulation did not exhibit hemolytic potential. Interestingly, the addition of mannose significantly improved (5.2-fold) the microbicidal efficacy against Mycobacterium tuberculosis H37Rv of the drug-co-loaded systems in comparison with their counterpart mannose-free polymeric micelles. Thus, this novel inhaled nanoformulation has demonstrated its potential for active drug delivery in pulmonary tuberculosis therapy.