Zaporožskij Medicinskij Žurnal (Dec 2017)

Development and validation of HPLC-DAD method of determination piperidinium 2-((5-(furan-2-yl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetate in 1 % solution

  • B. O. Varynskyi,
  • V. V. Parchenko,
  • А. G. Kaplaushenko

DOI
https://doi.org/10.14739/2310-1210.2017.6.115313
Journal volume & issue
no. 6
pp. 827 – 832

Abstract

Read online

Purpose. The purpose of this research is to develop new, highly sensitive and selective method for determination of piperidinium 2-((5-(furan-2-yl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetate as an active pharmaceutical ingredient (API) in 1 % injection solution based on high performance liquid chromatography with diode-array detection. Materials and methods. LC System was Agilent 1260 Infinity (degasser, binary pump, autosampler, thermostatted column compartment, diode array detector). Single quadrupole mass spectrometer Agilent 6120 with ionization in electrospray (ESI). Open LAB CDS Software. Column was Zorbax SB-C18; 30 mm × 4.6 mm; 1.8 µm. Injection volume was 2 µL. Isocratic mode. The mobile phase was water/acetonitrile (70:30) with 0.1 % methanoate acid. Standard samples were piperidinium 2-((5-(furan-2-yl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetate, furan-2-carbohydrazide, 2-(furan-2-carbonyl)-N-phenylhydrazine-1-carbothioamide, 5-(furan-2-yl)-4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione. Results. The graphs of the capacity factor from the acetonitrile concentration dependence in the mobile phase for potential impurities and API on diode-array detector were constructed. Optimal chromatography separation conditions for impurities and API were proposed. The UV spectra of API and impurities were presented. The API peak purity by mass spectrometric detector was determined. Method of the quantitative determination of the API in 1 % solution for injection was elaborated. Total sample preparation uncertainty was predicted. Method was validated according to European and Ukrainian Pharmacopeia. It was applied for real samples solutions for injection. Conclusions. The chromatography separation conditions of impurities and piperidinium 2-((5-(furan-2-yl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetate were studied The method of determination of piperidinium 2-((5-(furan-2-yl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetate in 1 % solution for injection was elaborated. The results of the method validation show that it is specific and meet the requirements of linearity, precision and accuracy.

Keywords