An mPOA-ARCAgRP pathway modulates cold-evoked eating behavior
Shuo Yang,
Yu Lin Tan,
Xiaohua Wu,
Jingjie Wang,
Jingjing Sun,
Anqi Liu,
Linhua Gan,
Bo Shen,
Xiaocui Zhang,
Yu Fu,
Ju Huang
Affiliations
Shuo Yang
Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Jingjie Wang
Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Jingjing Sun
Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Anqi Liu
Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Linhua Gan
Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Bo Shen
Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
Xiaocui Zhang
Core Facility of Basic Medical Sciences, Basic Medicine Faculty of Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China; Corresponding author
Summary: Enhanced appetite occurs as a means of behavioral thermoregulation at low temperature. Neural circuitry mediating this crosstalk between behavioral thermoregulation and energy homeostasis remains to be elucidated. We find that the hypothalamic orexigenic agouti-related neuropeptide (AgRP) neurons in the arcuate nucleus (ARC) are profoundly activated by cold exposure. The calcium signals in ARCAgRP neurons display an immediate-response pattern in response to cold stimulation. Cold-responsive neurons in the medial preoptic area (mPOA) make excitatory synapses onto ARCAgRP neurons. Inhibition of either ARCAgRP neurons or ARC-projecting mPOA neurons attenuates cold-evoked feeding, while activation of the mPOA-to-ARC projection increases food intake. These findings reveal an mPOA-ARCAgRP neural pathway that modulates cold-evoked feeding behavior.