Fractal and Fractional (Jul 2024)
Enhancing Transient Stability in Multi-Machine Power Systems through a Model-Free Fractional-Order Excitation Stabilizer
Abstract
The effective operation of model-based control strategies in modern energy systems, characterized by significant complexity, is contingent upon highly accurate large-scale models. However, achieving such precision becomes challenging in complex energy systems rife with uncertainties and disturbances. Controlling different parts of the energy system poses a challenge to achieving optimal power system efficiency, particularly when employing model-based control strategies, thereby adding complexity to current systems. This paper proposes a novel model-independent control approach aimed at augmenting transient stability and voltage regulation performance in multi machine energy systems. The approach involves the introduction of an optimized model-free fractional-order-based excitation system stabilizer for synchronous generators in a multi machine energy system. To overcome the limitations associated with complex system model identification, which add degrees of simplification at defined operating conditions and assume the system model remains fixed despite high uncertainty and numerous disturbances, an optimal model-independent fractional-order-based excitation control strategy is introduced. The efficacy of the proposed approach is validated through comparative numerical analyses using the MATLAB/Simulink environment. These simulations were conducted on a two-area, 12-bus multi-machine power system. Simulation results demonstrate that the presented excitation system stabilizer outperforms conventional controllers in terms of transient and small-signal stability. It also suppresses the low-frequency electromechanical oscillations within the multimachine energy system.
Keywords