Nature Communications (Nov 2023)
Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning
Abstract
Abstract In this work, we report the monolithic three-dimensional integration (M3D) of hybrid memory architecture based on resistive random-access memory (RRAM), named M3D-LIME. The chip featured three key functional layers: the first was Si complementary metal-oxide-semiconductor (CMOS) for control logic; the second was computing-in-memory (CIM) layer with HfAlOx-based analog RRAM array to implement neural networks for feature extractions; the third was on-chip buffer and ternary content-addressable memory (TCAM) array for template storing and matching, based on Ta2O5-based binary RRAM and carbon nanotube field-effect transistor (CNTFET). Extensive structural analysis along with array-level electrical measurements and functional demonstrations on the CIM and TCAM arrays was performed. The M3D-LIME chip was further used to implement one-shot learning, where ~96% accuracy was achieved on the Omniglot dataset while exhibiting 18.3× higher energy efficiency than graphics processing unit (GPU). This work demonstrates the tremendous potential of M3D-LIME with RRAM-based hybrid memory architecture for future data-centric applications.