Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients
Heldeney Rodrigues Sousa,
Idglan Sá Lima,
Lucas Matheus Lima Neris,
Albert Santos Silva,
Ariane Maria Silva Santos Nascimento,
Francisca Pereira Araújo,
Rafael Felippe Ratke,
Durcilene Alves Silva,
Josy Anteveli Osajima,
Leilson Rocha Bezerra,
Edson Cavalcanti Silva-Filho
Affiliations
Heldeney Rodrigues Sousa
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Idglan Sá Lima
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Lucas Matheus Lima Neris
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Albert Santos Silva
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Ariane Maria Silva Santos Nascimento
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Francisca Pereira Araújo
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Rafael Felippe Ratke
Graduate Studies in Agronomy, Mato Grosso of Soulth Federal University, Chapadão do Sul 76560-000, Mato Grosso do Sul, Brazil
Durcilene Alves Silva
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Josy Anteveli Osajima
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Leilson Rocha Bezerra
Veterinary Medicine Academic Unit, Campina Grande Federal University, Patos 58708-110, Paraíba, Brazil
Edson Cavalcanti Silva-Filho
LIMAV, Interdisciplinary Laboratory for Advanced Materials, Piaui Federal University, Campus Universitário Ministro Petrônio Portella, Teresina 64049-550, Piaui, Brazil
Agricultural production is influenced by the water content in the soil and availability of fertilizers. Thus, superabsorbent hydrogels, based on polyacrylamide, natural cashew tree gum (CG) and potassium hydrogen phosphate (PHP), as fertilizer and water releaser were developed. The structure, morphology, thermal stability and chemical composition of samples of polyacrylamide and cashew tree gum hydrogels with the presence of fertilizer (HCGP) and without fertilizer (HCG) were investigated, using X-ray diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA/DTG) and Energy Dispersive Spectroscopy (EDS). Swelling/reswelling tests, textural analysis, effect of pH, release of nutrients and kinetics were determined; the ecotoxicity of the hydrogels was investigated by the Artemia salina test. The results showed that PHP incorporation in the hydrogel favored the crosslinking of chains. This increased the thermal stability in HCGP but decreased the hardness and adhesion properties. The HCGP demonstrated good swelling capacity (~15,000 times) and an excellent potential for reuse after fifty-five consecutive cycles. The swelling was favored in an alkaline pH due to the ionization of hydrophilic groups. The sustained release of phosphorus in HCGP was described by the Korsmeyer–Peppas model, and Fickian diffusion is the main fertilizer release mechanism. Finally, the hydrogels do not demonstrate toxicity, and HCGP has potential for application in agriculture.