Environmental Chemistry and Ecotoxicology (Jan 2024)
Two-dimensional MXenes for toxin management: Advanced electrocatalytic detection, degradation, and adsorption dynamics
Abstract
Environmental toxins threaten human health and ecosystem integrity, necessitating advanced detection, degradation, and removal methodologies. In recent years, the scientific community has increasingly focused on MXenes, a novel class of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, due to their exceptional potential in toxin management. This comprehensive review thoroughly examines MXenes, including synthesis methods, structural and chemical properties, and functionalization strategies. Unique to this review is the integrated discussion of MXenes in the context of environmental toxin management, encompassing detection, degradation, and removal within a single study. The enhancement of sensor technologies using MXenes for rapid and precise toxin detection is thoroughly analyzed. It focuses on MXene-mediated degradation pathways, especially photocatalytic and electrocatalytic mechanisms, considering their redox potential and light-harvesting capabilities. Additionally, the adsorption dynamics of MXene-based adsorbents are scrutinized, covering adsorption capacity, kinetics, and regeneration/recyclability. The review offers a comparative evaluation of MXenes with other 2D materials, positioning MXenes within the broader context of toxin management solutions. This article stands out for its novel and comprehensive approach, being the first to concurrently address the detection, degradation, and removal of environmental toxins using MXenes. The review concludes by underscoring the vast potential of MXenes in addressing environmental toxins. It emphasizes the urgent need for continued research to optimize their performance, scale up production, and enable practical implementation. This detailed reference aims to serve researchers and practitioners in environmental management, guiding future innovations and applications of MXenes in toxin control.