Heliyon (Nov 2019)

Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves

  • Is Fatimah,
  • Nurcahyo Iman Prakoso,
  • Imam Sahroni,
  • M. Miqdam Musawwa,
  • Yoke-Leng Sim,
  • Fethi Kooli,
  • Oki Muraza

Journal volume & issue
Vol. 5, no. 11
p. e02766

Abstract

Read online

In this work, TiO2/SiO2 composite photocatalysts were prepared using biogenic silica extracted from bamboo leaves and titanium tetraisopropoxide as a titania precursor via a sol–gel mechanism. A study of the physicochemical properties of materials as a function of their titanium dioxide content was conducted using Fourier transform infrared spectroscopy, a scanning electron microscope, a diffuse reflectance ultraviolet-visible (UV-vis) spectrophotometer, and a gas sorption analyzer. The relationship between physicochemical parameters and photocatalytic performance was evaluated using the methylene blue (MB) photocatalytic degradation process under UV irradiation with and without the addition of H2O2 as an oxidant. The results demonstrated that increasing the TiO2 helps enhance the parameters of specific surface area, the pore volume, and the particle size of titanium dioxide, while the band gap energy reaches a maximum of 3.21 eV for 40% and 60% Ti content. The composites exhibit photocatalytic activity with the MB degradation with increasing photocatalytic efficiency since the composites with 40 and 60% wt. of TiO2 demonstrated the higher degradation rate compared with TiO2 in the presence and absence of H2O2. This higher rate is correlated with the higher specific surface area and band gap energy compared with those of TiO2.

Keywords