Communications Biology (Mar 2025)
Structural basis for the asymmetric binding of coactivator SRC1 to FXR-RXRα and allosteric communication within the complex
Abstract
Abstract Farnesoid X receptor (FXR) is a promising target for treatment of metabolic associated fatty liver disease (MAFLD). In this study, we employed an integrative approach to investigate the interaction between FXR-RXRα-DNA complex and the entire coactivator SRC1-NRID (nuclear receptor interaction domain). We constructed a multi-domain model of FXR-RXRα-DNA, highlighting the interface between FXR-DBD and LBD. Using HDX-MS, XL-MS, and biochemical assays, we revealed the allosteric communications in FXR-RXRα-DNA upon agonist and DNA binding. We then demonstrated that SRC1 binds only to the coactivator binding surface of FXR within the FXR-RXRα heterodimer, with the NR-box2 and NR-box3 of SRC1 as the key binding motifs. Our findings, which provide the first model of SRC1-NRID in complex with FXR-RXRα-DNA, shed light on the molecular mechanism through which the coactivator asymmetrically interacts with nuclear receptors and provide structural basis for further understanding the function of FXR and its implications in diseases.