PLoS ONE (Jan 2017)

Clusters of amniotic fluid cells and their associated early neuroepithelial markers in experimental myelomeningocele: Correlation with astrogliosis.

  • Jolanta Zieba,
  • Amanda Miller,
  • Oleg Gordiienko,
  • George M Smith,
  • Barbara Krynska

DOI
https://doi.org/10.1371/journal.pone.0174625
Journal volume & issue
Vol. 12, no. 3
p. e0174625

Abstract

Read online

Myelomeningocele (MMC) is the most common and severe disabling type of spina bifida resulting in the exposure of vulnerable spinal cord to the hostile intrauterine environment. In this study, we sought to examine the cellular content of fetal amniotic fluid (AF) in MMC and explore a correlation between these cells and pathological development of MMC. MMC was induced in fetal rats by exposing pregnant mothers to all-trans retinoic acid and AF samples were collected before term. Cells were isolated from AF samples and morphologically and phenotypically characterized in short-term cultures. In addition, the spinal cord injury in MMC fetuses was assessed by immunohistochemical examination of astrogliosis. We identified a population of cells from the AF of MMC fetuses (MMC-AF) that formed adherent clusters of tightly packed cells, which were absent from the AF of normal control fetuses (norm-AF). MMC-AF clusters contained cells co-expressing adherens junction associated proteins (ZO-1), N-cadherin and F-actin at sites of cell-cell contacts. In addition, they expressed markers of early neuroepithelial cells such as SOX-1 and Pax-6 along with other stem/progenitor cell markers such as SOX-2 and nestin. Subpopulations of cells in MMC-AF clusters also expressed more advanced differentiation markers such as doublecortin and GFAP. We found that the appearance of cluster forming cells in cultures from MMC-AF correlated with activation of astrogliosis associated with the spinal cord injury in MMC fetuses. In summary, we identified a neuroepithelial cell population in the AF of MMC fetuses that formed adherent clusters in culture and we characterized cellular markers of these cells. Our data suggests that the phase of the disease is a crucial factor in the emergence of these cells into the AF and that these cells may provide a new and important platform for studying the progression of MMC and development of improved strategies for the repair and diagnosis of MMC prenatally.