Genetics Research (Jan 2023)
miR-19-3p Targets PTEN to Regulate Cervical Cancer Cell Proliferation, Invasion, and Autophagy
Abstract
Background. Cervical cancer is the second most common cancer among women worldwide. Extensive studies have shown that microRNAs (miRNA/miR) can regulate the formation, progression, and metastasis of cancer. The purpose of this study was to investigate the effect of miR-19-3p on the proliferation, invasion, and autophagy of cervical cancer cells and to explore the underlying mechanism. Methods. SiHa and HeLa cells were transfected with miR-19-3p mimic and inhibitor. miR-19-3p and PTEN expression were detected using real-time quantitative PCR and western blot, respectively. The binding between miR-19-3p and PTEN was predicted using Targetscan7.2 and verified by a dual-luciferase reporter gene assay. The effects of miR-19-3p on cell invasion and proliferation were evaluated by Transwell assays and MTT, respectively. The effect of miR-19-3p on autophagy was observed using fluorescence microscopy. Results. The expression of miR-19-3p in cervical cancer tissues and SiHa and HeLa cells was significantly upregulated, whereas the expression of PTEN was significantly downregulated. PTEN was one of the direct targets of miR-19-3p. The miR-19-3p mimic significantly reduced the apoptosis rate and autophagy and promoted cell proliferation and invasion of the SiHa and HeLa cells. Conclusion. In summary, miR-19b-3p can target PTEN to regulate the proliferation, invasion, and autophagy of cervical cancer cells. Our findings indicate the potential of miR-19-3p as a target for cervical cancer treatment in the future.