Biomedicines (Dec 2023)
Synergy of Muscle and Cortical Activation through Vojta Reflex Locomotion Therapy in Young Healthy Adults: A Pilot Randomized Controlled Trial
Abstract
Background: Vojta Therapy is a neurorehabilitation therapy that allows to activate reflex movement patterns. The scientific literature has shown its ability to generate muscle contractions. The activation of brain neural networks has also been proven. However, the relationship between these processes has not yet been demonstrated. For this reason, the aim of this study is to verify brain activation produced by recording with near-infrared spectroscopy and its relationship with muscle activation produced in the abdominal muscles recorded with surface electromyography. Methods: A total sample of 27 healthy subjects over 18 years of age was recruited. An experimental study on a cohort was conducted. Two experimental conditions were considered: stimuli according to the Vojta protocol, and a control non-stimuli condition. Abdominal muscle activation was measured using surface electromyography, and the activation of the motor cortex was assessed with near-infrared spectroscopy. Results: In relation to the oxygenated hemoglobin concentration (HbO), an interaction between the stimulation phase and group was observed. Specifically, the Vojta stimulation group exhibited an increase in concentration from the baseline phase to the first resting period in the right hemisphere, contralateral to the stimulation area. This rise coincided with an enhanced wavelet coherence between the HbO concentration and the electromyography (EMG) signal within a gamma frequency band (very low frequency) during the first resting period. Conclusions: The results underscore the neurophysiological effects on the brain following tactile stimulation via Vojta Therapy, highlighting increased activity in pivotal areas essential for sensory processing, motor planning, and control. This activation, particularly evident in the Vojta stimulation group, aligns with previous findings, suggesting that tactile stimuli can not only evoke the intention to move but can also initiate actual muscle contractions, emphasizing the therapy’s potential in enhancing innate locomotion and rolling movements in patients with neurological disorders.
Keywords