Atmosphere (Dec 2022)
Decoupling of the Municipal Thermal Environment Using a Spatial Autoregressive Model
Abstract
In the rapid urbanization process, climate change has a huge impact on the urban thermal environment, and the urban heat island has attracted widespread attention from society. How to better detect, analyze, and evaluate the urban heat island effect has become a hot issue in current urban environmental research. However, the correlation analysis of heat island factors mostly adopts the conventional least square method, without considering the correlation of and the interaction between spatial elements. At the same time, the single analysis method makes it difficult to analyze environmental problems scientifically, which leads to great bias. Therefore, in this paper, the spatial autoregressive confusion model was used to analyze the satellite data of Beijing, and a preliminary temperature model of Beijing for all seasons was established. The regression results show that the surface temperature of Beijing has a strong spatial autocorrelation, and that the modified normalized difference water index and the normalized differential vegetation index have a strong negative effect on the land surface temperature. The prediction models established in this study can provide accurate and sustainable data support in the urbanization process and aid in the creation of a sustainable and effective urban environment.
Keywords