Cellular Physiology and Biochemistry (Aug 2018)

Microarray Analysis of Differentially Expressed Profiles of Circular RNAs in a Mouse Model of Intestinal Ischemia/Reperfusion Injury with and Without Ischemic Postconditioning

  • Dongcheng Feng,
  • Zhenlu Li,
  • Guangzhi Wang,
  • Jihong Yao,
  • Yang Li,
  • Wasim Qasim,
  • Yongfu Zhao,
  • Xiaofeng Tian

DOI
https://doi.org/10.1159/000492280
Journal volume & issue
Vol. 48, no. 4
pp. 1579 – 1594

Abstract

Read online

Background/Aims: Ischemic postconditioning (iPoC) represents a promising strategy to mitigate ischemia/reperfusion (I/R) injury of the intestine, yet the mechanisms of this treatment remain to be elucidated. Circular RNAs (circRNAs), a novel class of endogenous non-coding RNAs, have recently been recognized as important regulators of gene expression and pathological processes. Here, we aimed to investigate the expression patterns of circRNAs after intestinal I/R with and without iPoC and, furthermore, to explore the potential mechanisms of iPoC in relation to the differentially expressed circRNAs. Methods: The global circRNA and mRNA expression profiles in mouse intestinal mucosa were initially screened by microarray (n = 3 per group) and quantitative real-time PCR was used to validate the expression pattern of circRNAs and mRNAs. Bioinformatics analysis including Gene ontology, KEGG pathway analysis, microRNA binding sites identification and circRNA-miRNA-mRNA network construction were utilized for in-depth mechanism exploration. Results: There were 4 up- and 58 downregulated circRNAs as well as 322 up- and 199 downregulated mRNAs in the intestinal I/R group compared with the sham group, whereas compared with I/R, iPoC treatment significantly upregulated 12 circRNAs and 129 mRNAs and downregulated 21 circRNAs and 174 mRNAs. The expression levels of a randomly selected set of 6 circRNAs and 5 mRNAs were successfully validated by qRT-PCR. Through a systematic comparison of the direction of circRNA expression changes in all groups, we identified two circRNAs, circRNA_012412 and circRNA_016863, that may be closely associated with the protective mechanisms of iPoC. Finally, four possible circRNA_012412/circRNA_016863-miRNA-mRNA pathways were predicted, which may play important roles in endogenous protective signaling in iPoC. Conclusions: This study was the first to comprehensively delineate the expression profiles of circRNAs in a mouse model of intestinal I/R and iPoC and provides novel clues for understanding the mechanisms of iPoC against intestinal I/R injury.

Keywords