Frontiers in Agronomy (Oct 2023)

Herbicide programs, cropping sequences, and tillage-types: a systems approach for managing Amaranthus palmeri in dicamba-resistant cotton

  • Rohith Vulchi,
  • Scott Nolte,
  • Joshua McGinty,
  • Benjamin McKnight

DOI
https://doi.org/10.3389/fagro.2023.1277054
Journal volume & issue
Vol. 5

Abstract

Read online

Herbicide-resistant Amaranthus palmeri poses a significant threat to cotton production in the US. Tillage, cover crops, crop rotations, and dicamba-based herbicide programs can individually provide effective control of A. palmeri, but there is a lack of research evaluating the above tactics in a system for its long-term management. Field trials were conducted near College Station and Thrall, TX (2019–2021) to evaluate the efficacy of dicamba-based herbicide programs under multiple cropping sequences and tillage types in a systems approach for A. palmeri control in dicamba-resistant cotton. The experimental design used was a split–split plot design. The main plots were no-till cover cropping, strip tillage, and conventional tillage. The subplots were cotton:cotton:cotton (CCC) and cotton:sorghum:cotton (CSC) sequences for 3 years within each tillage type, and sub-subplots were a weedy check (WC), a weed-free check (WF), a low-input program without residual herbicides (LI), and a high-input program with residual herbicides (HI). Using HI under the CSC sequence was the only system that provided >90% control of A. palmeri for 3 years across all tillage types and locations. By 2021, A. palmeri densities in the CSC sequence at College Station (4,156 plants ha−1) and Thrall (4,006 plants ha−1) are significantly low compared to the CCC sequence (31,364 and 9,867 plants ha−1, respectively) when averaged across other factors. Similarly, A. palmeri densities in HI at College Station (9,867 plants ha−1) and Thrall (1,016 plants ha−1) are significantly low compared to LI (25,653 and 13,365 plants ha−1, respectively) when averaged across other factors. We also observed that the CSC sequence reduced A. palmeri seed bank by at least 40% compared to the CCC sequence at both College Station and Thrall when averaged across other factors. Over 3 years, we did not observe significant differences between LI and HI for cotton yields at College Station (1,715–3,636 kg ha−1) and Thrall (1,569−1,989 kg ha−1). However, rotating cotton with sorghum during 2020 improved cotton yields by 39% under no-till cover cropping in 2021 at Thrall. These results indicate that using dicamba-based herbicide programs with residual herbicides and implementing crop rotations can effectively manage A. palmeri in terms of seasonal control, densities, and seed bank buildup across tillage types and environments.

Keywords