CLC-3 regulates TGF-β/smad signaling pathway to inhibit the process of fibrosis in hypertrophic scar
Qian Liang,
Fuqiang Pan,
Houhuang Qiu,
Xiang Zhou,
Jieyun Cai,
Ruijin Luo,
Zenghui Xiong,
Huawei Yang,
Liming Zhang
Affiliations
Qian Liang
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
Fuqiang Pan
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
Houhuang Qiu
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
Xiang Zhou
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
Jieyun Cai
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
Ruijin Luo
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
Zenghui Xiong
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China
Huawei Yang
Department of Breast Surgery, Affiliated Cancer Hospital of Guangxi Medical University, No. 71 Hedi Road, Nanning City, Guangxi Province, China; Corresponding author.
Liming Zhang
Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, No. 166 Daxue East Road, Xixiangtang District, Nanning City, Guangxi Province, China; Corresponding author.
Objective: To study the role and mechanism of chloride channel-3 (ClC-3) in the formation of hypertrophic scar by constructing ClC-3 interference vectors and examining their effects on human hypertrophic scar fibroblasts (HSFB). Methods: Human HSFB and human normal skin fibroblasts (NSFB) were used in this study, and ClC-3 interference vectors were constructed to transfect cells. ClC-3 inhibitors NPPB and Tamoxifen were used to treat cells. Cell migration and the expression of TGF-β/Smad, CollagenⅠ,CollagenⅢ were examined to explore the role of ClC-3 in the formation of hypertrophic scar. Results: Compared with the normal skin tissue, the positive expression of ClC-3 and TGF–β in the scar tissue was significantly increased. The relative expression of ClC-3 and TGF-β1 in HSFB cells was higher than that in NSFB cells. Interfering with the expression of CLC-3 can inhibit the migration of HSFB cells and the expression of TGF- β/Smad, CollagenⅠ/Ⅲ. The experiment of HSFB cells treated by CLC-3 inhibitors can also obtain similar results. Conclusion: Inhibiting CLC-3 can reduce the formation of hypertrophic scars.