Remodeling Isoprene Pyrophosphate Metabolism for Promoting Terpenoids Bioproduction
Xianhao Xu,
Xueqin Lv,
Shixiu Cui,
Yanfeng Liu,
Hongzhi Xia,
Jianghua Li,
Guocheng Du,
Zhaofeng Li,
Rodrigo Ledesma-Amaro,
Jian Chen,
Long Liu
Affiliations
Xianhao Xu
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
Xueqin Lv
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
Shixiu Cui
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
Yanfeng Liu
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
Hongzhi Xia
Richen Bioengineering Co., Ltd., Nantong 226000, China
Jianghua Li
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
Guocheng Du
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
Zhaofeng Li
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Rodrigo Ledesma-Amaro
Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
Jian Chen
Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Corresponding authors.
Long Liu
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Corresponding authors.
Terpenoids are the largest family of natural products. They are made from the building block isoprene pyrophosphate (IPP), and their bioproduction using engineered cell factories has received a great deal of attention. To date, the insufficient metabolic supply of IPP remains a great challenge for the efficient synthesis of terpenoids. In this work, we discover that the imbalanced metabolic flux distribution between the central metabolism and the IPP supply hinders IPP accumulation in Bacillus subtilis (B. subtilis). Therefore, we remodel the IPP metabolism using a series of genetically encoded two-input-multi-output (TIMO) circuits that are responsive to pyruvate or/and malonyl-CoA, resulting in an IPP pool that is significantly increased by up to four-fold. As a proof-of-concept validation, we design an IPP metabolism remodeling strategy to improve the production of three valuable terpenoids, including menaquinone-7 (MK-7, 4.1-fold), lycopene (9-fold), and β-carotene (0.9-fold). In particular, the titer of MK-7 in a 50-L bioreactor reached 1549.6 mg∙L−1, representing the highest titer reported so far. Thus, we propose a TIMO genetic circuits-assisted IPP metabolism remodeling framework that can be generally used for the synergistic fine-tuning of complicated metabolic modules to achieve the efficient bioproduction of terpenoids.