Cancer Cell International (Apr 2021)

Circular RNA hsa_circ_0003288 induces EMT and invasion by regulating hsa_circ_0003288/miR-145/PD-L1 axis in hepatocellular carcinoma

  • Guili Xu,
  • Peng Zhang,
  • Hansi Liang,
  • Yunhua Xu,
  • Jian Shen,
  • Wansheng Wang,
  • Mingming Li,
  • Jintao Huang,
  • Caifang Ni,
  • Xueguang Zhang,
  • Xiaoli Zhu

DOI
https://doi.org/10.1186/s12935-021-01902-2
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Epithelial-mesenchymal transition (EMT) has been associated with wound healing, tumorigenesis, and metastasis. Circular RNAs (circRNAs) are functional non-coding RNAs involved in multiple human cancers. However, whether and how circRNAs contribute to the EMT in hepatocellular carcinomas (HCC) remains to be deciphered. In this study, we investigated the regulation and function of hsa_circ_0003288 on programmed death-1 ligand 1 (PD-L1) during EMT and HCC invasiveness. Methods Hsa_circ_0003288 expression was measured by real-time quantitative reverse transcriptase PCR (qRT-PCR). Luciferase reporter assays, RNA pull-down assay and fluorescence in situ hybridization (FISH) were used to determine the correlation between hsa_circ_0003288 and miR-145 and between miR-145 and PD-L1. Furthermore, ectopic overexpression and siRNA-mediated downregulation of hsa_circ_0003288, transwell assays, and in vivo studies were used to determine the function of hsa_circ_0003288 on the EMT and invasiveness of L02 and HCC cells. Results miR-145 directly targeted the PD-L1 3′-untranslated region (UTR) region, and hsa_circ_0003288 acted as a miR-145 sponge to regulate PD-L1 expression. Overexpression of hsa_circ_0003288 increased PD-L1 levels and promoted EMT, migration, and invasiveness of L02 cells. These observations were reversed after knockdown of hsa_circ_0003288 in HepG2 and Huh7 cells. Overexpression of PD-L1 rescued EMT, migration, and invasiveness of HepG2 and Huh7 cells after knockdown of hsa_circ_0003288. Furthermore, hsa_circ_0003288 knockdown reduced EMT in in vivo studies. Hsa_circ_0003288/PD-L1 axis was found to mediate the metastatic phenotypes via the PI3K/Akt pathway in HCC. Additionally, expression levels of hsa_circ_0003288 were increased and positively correlated with PD-L1 expression in HCC tissues. Conclusion Our findings demonstrated that hsa_circ_0003288 promoted EMT and invasion of HCC via the hsa_circ_0003288/miR-145/PD-L1 axis through the PI3K/Akt pathway. Targeting hsa_circ_0003288 may be a therapeutic strategy for the treatment of HCC.

Keywords