Life (Mar 2015)

Modeling the Role of pH on Baltic Sea Cyanobacteria

  • Jana Hinners,
  • Richard Hofmeister,
  • Inga Hense

DOI
https://doi.org/10.3390/life5021204
Journal volume & issue
Vol. 5, no. 2
pp. 1204 – 1217

Abstract

Read online

We simulate pH-dependent growth of cyanobacteria with an ecosystem model for the central Baltic Sea. Four model components—a life cycle model of cyanobacteria, a biogeochemical model, a carbonate chemistry model and a water column model—are coupled via the framework for aquatic biogeochemical models. The coupled model is forced by the output of a regional climate model, based on the A1B emission scenario. With this coupled model, we perform simulations for the period 1968–2098. Our simulation experiments suggest that in the future, cyanobacteria growth is hardly affected by the projected pH decrease. However, in the simulation phase prior to 1980, cyanobacteria growth and N2-fixation are limited by the relatively high pH. The observed absence of cyanobacteria before the 1960s may thus be explained not only by lower eutrophication levels, but also by a higher alkalinity.

Keywords