Fisheries and Aquatic Sciences (May 2018)

Interspecific hybridization in seahorses: artificially produced hybrid offspring of Hippocampus kuda and Hippocampus reidi

  • Sang-Yun Han,
  • Sum Rho,
  • Gyeong Eon Noh,
  • Jin-Koo Kim

DOI
https://doi.org/10.1186/s41240-018-0088-x
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Interspecific hybridization experiments were conducted between the common seahorse Hippocampus kuda (male) and the slender seahorse H. reidi (female) during artificial rearing to develop a new aquarium fish with unique polyandrous mating. Molecular analysis via mitochondrial DNA (mtDNA) cytochrome b and nuclear DNA (ncDNA) ribosomal protein S7 gene supported the hybridization between the two species, and the hybrid also showed morphological characteristics of both species. Juveniles of H. kuda have dense melanophores on the whole body or only on the trunk and tail, whereas juveniles of H. reidi have thin melanophores on the whole body or present in stripes only along their prominent trunk and tail rings. However, all the hybrid juveniles had dense melanophores only on the tail, with the striped trunk rings, thus showing an intermediate pattern, and these patterns were limited to the fairly early stage of development (1–10 days old). In contrast, the two eye spines in the hybrid were apparent after 9 days old, which were not inherited from H. kuda (one eye spine), but from H. reidi (two eye spines). According to LOESS (local regression) analysis, the growth rate increased between 20 and 25 days, and the hybrids grew faster than H. kuda when they entered the explosive second phase of growth between 25 and 45 days for all the seahorses. This study highlights the hybridization between H. kuda and H. reidi may contribute to the improved taxonomic information of young seahorses.

Keywords