BMC Research Notes (May 2009)

Medaka: a promising model animal for comparative population genomics

  • Watanabe Koji,
  • Bujnicki Janusz M,
  • Nishina Hiroshi,
  • Asaoka Yoichi,
  • Oota Hiroki,
  • Matsumoto Yoshifumi,
  • Oda Shoji,
  • Kawamura Shoji,
  • Mitani Hiroshi

DOI
https://doi.org/10.1186/1756-0500-2-88
Journal volume & issue
Vol. 2, no. 1
p. 88

Abstract

Read online

Abstract Background Within-species genome diversity has been best studied in humans. The international HapMap project has revealed a tremendous amount of single-nucleotide polymorphisms (SNPs) among humans, many of which show signals of positive selection during human evolution. In most of the cases, however, functional differences between the alleles remain experimentally unverified due to the inherent difficulty of human genetic studies. It would therefore be highly useful to have a vertebrate model with the following characteristics: (1) high within-species genetic diversity, (2) a variety of gene-manipulation protocols already developed, and (3) a completely sequenced genome. Medaka (Oryzias latipes) and its congeneric species, tiny fresh-water teleosts distributed broadly in East and Southeast Asia, meet these criteria. Findings Using Oryzias species from 27 local populations, we conducted a simple screening of nonsynonymous SNPs for 11 genes with apparent orthology between medaka and humans. We found medaka SNPs for which the same sites in human orthologs are known to be highly differentiated among the HapMap populations. Importantly, some of these SNPs show signals of positive selection. Conclusion These results indicate that medaka is a promising model system for comparative population genomics exploring the functional and adaptive significance of allelic differentiations.