Animal (Jan 2011)
Prediction of fat quality in pig carcasses by near-infrared spectroscopy
Abstract
This study was conducted to evaluate the potential of near-infrared (NIR) spectroscopy (NIRS) technology for prediction of the chemical composition (moisture content and fatty acid composition) of fat from fast-growing, lean slaughter pig samples coming from breeding programmes. NIRS method I: a total of 77 samples of intact subcutaneous fat from pigs were analysed with the FOSS FoodScan NIR spectrophotometer (850 to 1050 nm) and then used to predict the moisture content by using partial least squares (PLS) regression methods. The best equation obtained has a coefficient of determination for cross-validation (CV; R2cv) and a root mean square error of a CV (RMSECV) of 0.88 and 1.18%, respectively. The equation was further validated with (n = 15) providing values of 0.83 and 0.42% for the coefficient of determination for validation (R2val) and root mean square error of prediction (RMSEP), respectively. NIRS method II: in this case, samples of melted subcutaneous fat were analysed in an FOSS XDS NIR rapid content analyser (400 to 2500 nm). Equations based on modified PLS regression methods showed that NIRS technology could predict the fatty acid groups, the main fatty acids and the iodine value accurately with R2cv, RMSECV, R2val and RMSEP of 0.98, 0.38%, 0.95 and 0.49%, respectively (saturated fatty acids), 0.94, 0.45%, 0.97 and 0.65%, respectively (monounsaturated fatty acids), 0.97, 0.28%, 0.99 and 0.34%, respectively (polyunsaturated fatty acids), 0.76, 0.61%, 0.84 and 0.87%, respectively (palmitic acid, C16:0), 0.75, 0.16%, 0.89 and 0.10%, respectively (palmitoleic acid, C16:1n-7), 0.93, 0.41%, 0.96 and 0.64%, respectively (steric acid, C18:0), 0.90, 0.51%, 0.94 and 0.44%, respectively (oleic acid, C18:1n-9), 0.97, 0.25%, 0.98 and 0.29% (linoleic acid, C18:2n-6), 0.68, 0.09%, 0.57 and 0.16% (α-linolenic acid, C18:3n-3) and 0.97, 0.57, 0.97 and 1.22, respectively (iodine value, calculated). The magnitude of this error showed quite good accuracy using these rapid methods in prediction of the moisture and fatty acid composition of fat from pigs involved in breeding schemes.