Annals of Clinical and Translational Neurology (Jul 2024)

How many patients do you need? Investigating trial designs for anti‐seizure treatment in acute brain injury patients

  • Harsh Parikh,
  • Haoqi Sun,
  • Rajesh Amerineni,
  • Eric S. Rosenthal,
  • Alexander Volfovsky,
  • Cynthia Rudin,
  • M. Brandon Westover,
  • Sahar F. Zafar

DOI
https://doi.org/10.1002/acn3.52059
Journal volume & issue
Vol. 11, no. 7
pp. 1681 – 1690

Abstract

Read online

Abstract Background/objectives Epileptiform activity (EA), including seizures and periodic patterns, worsens outcomes in patients with acute brain injuries (e.g., aneurysmal subarachnoid hemorrhage [aSAH]). Randomized control trials (RCTs) assessing anti‐seizure interventions are needed. Due to scant drug efficacy data and ethical reservations with placebo utilization, and complex physiology of acute brain injury, RCTs are lacking or hindered by design constraints. We used a pharmacological model‐guided simulator to design and determine the feasibility of RCTs evaluating EA treatment. Methods In a single‐center cohort of adults (age >18) with aSAH and EA, we employed a mechanistic pharmacokinetic‐pharmacodynamic framework to model treatment response using observational data. We subsequently simulated RCTs for levetiracetam and propofol, each with three treatment arms mirroring clinical practice and an additional placebo arm. Using our framework, we simulated EA trajectories across treatment arms. We predicted discharge modified Rankin Scale as a function of baseline covariates, EA burden, and drug doses using a double machine learning model learned from observational data. Differences in outcomes across arms were used to estimate the required sample size. Results Sample sizes ranged from 500 for levetiracetam 7 mg/kg versus placebo, to >4000 for levetiracetam 15 versus 7 mg/kg to achieve 80% power (5% type I error). For propofol 1 mg/kg/h versus placebo, 1200 participants were needed. Simulations comparing propofol at varying doses did not reach 80% power even at samples >1200. Conclusions Our simulations using drug efficacy show sample sizes are infeasible, even for potentially unethical placebo‐control trials. We highlight the strength of simulations with observational data to inform the null hypotheses and propose use of this simulation‐based RCT paradigm to assess the feasibility of future trials of anti‐seizure treatment in acute brain injury.