npj Materials Degradation (Nov 2021)

Flow accelerated corrosion and erosion−corrosion behavior of marine carbon steel in natural seawater

  • Yunze Xu,
  • Qiliang Zhang,
  • Qipiao Zhou,
  • Shan Gao,
  • Bin Wang,
  • Xiaona Wang,
  • Yi Huang

DOI
https://doi.org/10.1038/s41529-021-00205-1
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 13

Abstract

Read online

Abstract In this work, flow accelerated corrosion (FAC) and erosion−corrosion of marine carbon steel in natural seawater were electrochemically studied using a submerged impingement jet system. Results show that the formation of a relatively compact rust layer in flowing natural seawater would lead to the FAC pattern change from ‘flow marks’ to pits. The increase of the flow velocity was found to have a negligible influence on the FAC rate at velocities of 5−8 m s−1. The synergy of mechanical erosion and electrochemical corrosion is the main contributor to the total steel loss under erosion−corrosion. The increase of the sand impact energy could induce the pitting damage and accelerate the steel degradation. The accumulation of the rust inside the pits could facilitate the longitudinal growth of the pits, however, the accumulated rusts retard the erosion of the pit bottom. The erosion and corrosion could work together to cause the steel peeling at the pit boundary. The steel degradation would gradually change from corrosion-dominated to erosion-dominated along with the impact energy increasing.