Entropy (Dec 2017)
Molecular Conformational Manifolds between Gas-Liquid Interface and Multiphasic
Abstract
The analysis of conformational changes of hydrocarbon molecules is imperative in the prediction of their transport properties in different phases, such as evaporation/condensation coefficients (β) in the gas-liquid interface and evaporation rates of fuel droplets (k) in multiphases. In this letter, we analyze the effects of entropic contributions ( T Δ S e v ( T ) ) to Δ G e v ( T ) during the evaporation/condensation of chain conformers at the interface with a modified version of the solvation model SMD/ωB97X-D/cc-pVTZ in which the temperature dependency of surface tension and the interfacial flow density of the conformers is taken into account. The evaporation/condensation coefficient (β) and evaporation rate (k) are respectively calculated using the statistical associating fluid theory (SAFT) and a combined quantum-classical reaction rate theory named quantum transition state theory-classical kinetic gas theory (QTST-CKGT). The detailed analyses show the importance of internal entropic states over the interfacial layer induced by meso-confinement phenomena in the very vicinity of fuel droplets surfaces.
Keywords