Applied Sciences (Oct 2024)

Nanostructured Magnetite Coated with BiOI Semiconductor: Readiness Level in Advanced Solar Photocatalytic Applications for the Remediation of Phenolic Compounds in Wastewater from the Wine and Pisco Industry

  • Alejandra Gallegos-Alcaíno,
  • Gabriela Paz Barría,
  • Yanko Moreno,
  • Iván Fernández,
  • Rodrigo Poblete,
  • Héctor Maureira-Cortés,
  • Antonia Cristal Figueroa Alvarado,
  • Constanza Belén Hernández,
  • José Flores

DOI
https://doi.org/10.3390/app14219898
Journal volume & issue
Vol. 14, no. 21
p. 9898

Abstract

Read online

Heterogeneous photocatalysis is an advanced, efficient oxidation process that uses solar energy to be sustainable and low-cost compared to conventional wastewater treatments. This study synthesized BiOI/Fe3O4 using the solvothermal technique, evaluating stoichiometric ratios of Bi/Fe (2:1, 3:1, 5:1, and 7:1) under simulated solar irradiation to optimize the degradation of caffeic acid, a pollutant found in wastewater from the wine and pisco industry. The nanomaterial with a 5:1 ratio (BF-5) was the most effective, achieving a degradation of 77.2% in 180 min. Characterization by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Brunauer–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH), Fourier Transform Infrared Spectroscopy (FTIR), Diffuse Reflectance Spectroscopy (DRS), and Vibrating Sample Magnetometry (VSM) showed that BF-5 has a porous three-dimensional structure with BiOI nanosheets coating the Fe3O4 surface, while retaining the pristine BiOI properties. The magnetite provided magnetic properties that facilitated the recovery of the photocatalyst, reaching 89.4% recovery. These findings highlight the potential of BF-5 as an efficient and recoverable photocatalyst for industrial applications. The technical, economic, and environmental feasibility were also evaluated at the technological readiness level (TRL) to project solar photocatalysis in real applications.

Keywords