Energies (Jun 2023)
The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China
Abstract
In the process of building a new power system with new energy sources as the mainstay, wind power and photovoltaic energy enter the multiplication stage with randomness and uncertainty, and the foundation and support role of large-scale long-time energy storage is highlighted. Considering the advantages of hydrogen energy storage in large-scale, cross-seasonal and cross-regional aspects, the necessity, feasibility and economy of hydrogen energy participation in long-time energy storage under the new power system are discussed. Firstly, power supply and demand production simulations were carried out based on the characteristics of new energy generation in China. When the penetration of new energy sources in the new power system reaches 45%, long-term energy storage becomes an essential regulation tool. Secondly, by comparing the storage duration, storage scale and application scenarios of various energy storage technologies, it was determined that hydrogen storage is the most preferable choice to participate in large-scale and long-term energy storage. Three long-time hydrogen storage methods are screened out from numerous hydrogen storage technologies, including salt-cavern hydrogen storage, natural gas blending and solid-state hydrogen storage. Finally, by analyzing the development status and economy of the above three types of hydrogen storage technologies, and based on the geographical characteristics and resource endowment of China, it is pointed out that China will form a hydrogen storage system of “solid state hydrogen storage above ground and salt cavern storage underground” in the future.
Keywords